FM: 100 ~ZerO2INfinitY

Answer any 20 questions-

- 1. A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number.
- 2. If (x 9) : (3x + 6) is the sub-duplicate ratio of 2 : 3, find the value of x.
- 3. Using componendo and dividendo, find the value of x-

$$\frac{\sqrt{3x+4}+\sqrt{3x-5}}{\sqrt{3x+4}-\sqrt{3x-5}}=9$$

- 4. If $\frac{x^2+y^2}{x^2+y^2} = \frac{17}{8}$ then find the value of

 - i. x: yii. $\frac{x^3 + y^3}{x^3 y^3}$
- 5. If $x = \frac{\sqrt{b+1} + \sqrt{b-1}}{\sqrt{b+1} \sqrt{b-1}}$ using properties of proportion show that $x^2 2bx + 1 = 0$.
- 6. The sum of the 2nd term and the 7th term of an A.P. is 30. If its 15th term is 1 less than twice of its 8th term, find the A.P.
- 7. Find the sum of all natural numbers between 250 and 1000 which are divisible by 9.
- 8. Second term of a geometric progression is 6 and its fifth term is 9 times of its third term. Find the geometric progression. Consider that each term of the G.P. is positive.
- 9. Find the sum of n terms of the series: $0.8 + 0.88 + 0.888 + \dots$
- 10. ABC is a right angled triangle with $\angle ABC = 90^{\circ}$. D is any point on AB and DE is perpendicular to AC. Prove that:
 - (i) $\triangle ADE \sim \triangle ACB$
 - (ii) If AC = 13 cm, BC = 5 cm and AE = 4 cm. Find DE and AD.
 - (iii) Find. Area of \triangle ADE: area of quadrilateral BCED.
- 11. Construct a triangle ABC, with AB = 7 cm, BC = 8 cm and \angle ABC = 60°. Locate by construction the point P such that:
 - (i)P is equidistant from B and C.
 - (ii) P is equidistant from AB and BC. Measure and record the length of PB
- 12. A straight line AB is 8 cm long. Draw and describe the locus of a point which is:
 - (i) Always 4 cm from the line AB

(ii) Equidistant from A and B.

Mark the two points X and Y, which are 4 cm from AB and equidistant from A and B. Describe the figure AXBY.

- 13. In the figure, $\angle DBC = 58^{\circ}$. BD is the diameter of the circle. Calculate:
 - (i) ∠BDC
 - (ii) ∠BEC
 - (iii) ∠BAC

14. In the given figure O is the centre of the circle. Tangents A and B meet at C. If $\angle ACO = 30^{\circ}$, find (i) $\angle BCO$ (ii) $\angle AOB$ (iii) $\angle APB$

- 15. Construct a \triangle ABC with BC = 6.5 cm, AB = 5.5 cm, AC = 5 cm. Construct the incircle of the triangle. Measure and record the radius of the incircle.
- 16. Draw a circle of radius 3.5 cm. Marks a point P outside the circle at a distance of 6 cm from the centre. Construct two tangents from P to the given circle. Measure and write down the length of one tangent.
- 17. A solid cone of radius 5 cm and height 8 cm is melted and made into small spheres of radius 0.5 cm. Find the number of spheres formed.
- 18. The surface area of a solid metallic sphere is 2464 cm2. It is melted and recast into solid right circular cones of radius 3.5 cm and height 7 cm. Calculate:
 - (i) the radius of the sphere.
 - (ii) the number of cones recast. (Take $\pi = 22/7$)
- 19. Show that (i) $\sqrt{\frac{1+\cos\theta}{1+\cos\theta}} = \frac{\sin\theta}{1+\cos\theta}$

(ii) Evaluate
$$\frac{sec29^\circ}{cosec61^\circ} + 2cot8^\circ cot17^\circ cot45^\circ cot73^\circ cot82^\circ - 3(sin^238^\circ + sin^252^\circ)$$

- 20. A man observes the angle of elevation of the top of a building to be 30°. He walks towards it in a horizontal line through its base. On covering 60 m the angle of elevation changes to 60°. Find the height of the building correct to the nearest metre.
- 21. The mean of the following distribution is 50 and the sum of all the frequencies is 120. Find the values of p and q.

Class- interval	0-20	20-40	40-60	60-80	80-100
frequency	17	p	32	q	19

22. The daily wages (in rupees) of 19 workers are:

41, 21, 38, 31, 27, 45, 23, 26, 29, 30, 28, 25, 35, 42, 47, 53, 29, 31, 35.

Find the:

- (i) The median
- (ii) Lower quartile
- (iii) Upper quartile
- (iv) Inter quartile range
- 23. From the following frequency distribution, find:
 - (i) The median
 - (ii) Lower quartile
 - (iii) Upper quartile
 - (iv) Inter quartile range

Variate	15	18	20	22	25	27	30
Frequency	4	6	8	9	7	8	6

24. The following table gives the weekly wages (in Rs.) of workers in a factory:

				_ \	,			
Weekly	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90
wages (in								
Rs.)								
No. of	5	20	10	10	9	6	12	8
workers								

Calculate:

- (i) The mean
- (ii) Modal class
- (iii) The number of workers getting weekly wages below Rs. 80
- (iv) The number of workers getting weekly wages Rs.65 or more but less than Rs. 85 as weekly wages.

25. The daily pocket expenses of 200 students in a school are given below:

*Pocket expenses (in Rs.) Number of students (Frequence)

expenses (in Rs.)	Number of students (Frequency)
0-5	10
5-10	14
10-15	28
15-20	42
20-25	50
25-30	30
30-35	14
35-40	12

Draw a histogram representing the above distribution and estimate the mode from the graph.